Prompt Engineering with Qwen3 for Structured Output (JSON, Tables, Markdown)
Introduction: Control the Shape of Qwen3’s Responses
When building AI agents, tools, or apps with Qwen3, output format matters.
This guide will show you how to:
-
Generate valid JSON for parsing or APIs
-
Create tables for reports and analysis
-
Use markdown formatting for readable outputs
-
Control output precision and consistency
With the right prompts, Qwen3 can act like a reliable backend service—not just a chatbot.
1. Basic Prompt Structure
Use OpenAI-style chat format:
text<|im_start|>system You are a JSON generator bot. Always return clean JSON. <|im_end|> <|im_start|>user Convert this info into JSON: Name: Alice, Age: 24, Skills: Python, ML <|im_end|> <|im_start|>assistant { "name": "Alice", "age": 24, "skills": ["Python", "ML"] }
✅ Use
systemto lock the output format style.
2. Generate JSON for APIs & Functions
Prompt Template:
text<|im_start|>system Respond only in raw JSON. No extra text or explanations. <|im_end|> <|im_start|>user Create a product object with name, price, stock, and tags. <|im_end|>
Qwen3 Output:
json{ "name": "Smart Watch", "price": 199.99, "stock": 42, "tags": ["electronics", "wearable", "fitness"] }
3. Generate Markdown (Great for Docs, UIs)
Prompt:
text<|im_start|>system Format your answer in markdown. <|im_end|> <|im_start|>user Write a comparison of Qwen3 and GPT-4. <|im_end|>
Output:
markdown| Feature | Qwen3 | GPT-4 | |----------------|----------------|----------------| | Open Source | ✅ Yes | ❌ No | | Max Context | 128K tokens | 128K tokens | | Cost | Free (local) | Paid |
4. Generate Tables
Great for BI dashboards, reports, and knowledge summaries.
Prompt:
text<|im_start|>system Return a markdown table comparing LLMs by model size and benchmark scores. <|im_end|>
Output:
markdown| Model | Params | HumanEval | MMLU | |---------------|--------|-----------|------| | Qwen3-7B | 7B | 78.4% | 62.1 | | GPT-4-Turbo | ? | 90.2% | 86.0 | | Claude Sonnet | ? | 82.3% | 78.5 |
5. Create Structured Instruction Outputs
To guide downstream tools or logic.
Prompt:
text<|im_start|>system Return output in this structure: { "task": "", "steps": [], "tools": [] } <|im_end|> <|im_start|>user I want to automate sending emails with Python. <|im_end|>
Output:
json{ "task": "Send emails with Python", "steps": [ "Install smtplib", "Compose email content", "Connect to SMTP server", "Send the email" ], "tools": ["Python", "smtplib"] }
6. Prompt Engineering Tips
| Tip | Why It Works |
|---|---|
Use system role clearly |
Sets behavior before all input |
| Be explicit in format | Avoids natural language drift |
| Add formatting constraints | e.g., "Respond in valid JSON" |
| Limit token length | Keeps responses short/structured |
| Use examples in prompts | Boosts pattern matching accuracy |
7. Common Use Cases for Structured Prompts
| Use Case | Format | Why It Helps |
|---|---|---|
| Chatbot Actions | JSON | For APIs and routing logic |
| UI Components | Markdown | Table, bullets, headers |
| Tool Invocation | JSON / Functions | Helps agents reason + call tools |
| Report Summaries | Markdown table | Great for auto-generated reports |
| Data Transformation | Structured text | CSV, table, XML, YAML-like output |
Conclusion: Structure Is Power
Qwen3 is highly capable at returning clean, structured, and parsable output—you just need to give it the right prompt shape.
Use this for:
-
API backends
-
Agent chains
-
AI dashboards
-
Developer tools
With structured prompting, Qwen3 becomes a reliable machine partner, not just a creative writer.
Resources
Qwen3 Coder - Agentic Coding Adventure
Step into a new era of AI-powered development with Qwen3 Coder the world’s most agentic open-source coding model.