How to Build a Multi-Agent System Using
Qwen3 and CrewAI

How to Build a Multi-Agent System Using Qwen3 and CrewAI

Introduction: Multi-Agent Systems Are the Next Frontier

LLMs are evolving from single-task bots to collaborative, multi-role agents.

With CrewAI, you can:

  • Create specialized agents (planner, researcher, coder)

  • Run them in workflows using Qwen3 models

  • Add tools like browsers, APIs, vector DBs

  • Host everything locally or in the cloud

In this guide, we’ll show you how to build a full-stack multi-agent system using Qwen3 + CrewAI.


1. What You Need

  • ✅ Python 3.10+

  • Qwen3 model (e.g., Qwen/Qwen1.5-14B-Chat)

  • CrewAI library

  • ✅ Optional tools: SerpAPI, LangChain, browser agent, Redis memory

Install dependencies:

bash
pip install crewai langchain openai transformers accelerate

2. Project Structure

arduino
qwen3-agents/ ├── main.py ├── agents/ │ ├── planner.py │ ├── researcher.py │ └── coder.py ├── tools/ │ └── websearch.py └── config.py

3. Create Your Agents

Example: agents/planner.py

python
from crewai import Agent def PlannerAgent(llm): return Agent( role="Project Planner", goal="Create step-by-step instructions for any task", backstory="An expert at breaking down goals into logical sequences.", verbose=True, llm=llm )

Repeat for ResearcherAgent and CoderAgent.


4. Add Tools (Optional)

Example: Web Search tool (using SerpAPI or LangChain tools):

python
from langchain.tools import DuckDuckGoSearchRun search_tool = DuckDuckGoSearchRun()

You can then pass this tool to your agents during setup.


5. Use Qwen3 as the LLM

In config.py:

python
from transformers import AutoModelForCausalLM, AutoTokenizer from langchain.llms import HuggingFacePipeline import torch from transformers import pipeline def load_qwen3_model(): model_id = "Qwen/Qwen1.5-14B-Chat" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) return HuggingFacePipeline(pipeline=pipe)

6. Create the Crew

python
from crewai import Crew from agents.planner import PlannerAgent from agents.researcher import ResearcherAgent from agents.coder import CoderAgent from config import load_qwen3_model llm = load_qwen3_model() crew = Crew( agents=[ PlannerAgent(llm), ResearcherAgent(llm), CoderAgent(llm) ], verbose=True ) result = crew.run("Build a Python app that scrapes weather data and displays it in a dashboard.") print(result)

7. Add Memory or Persistence (Optional)

Use Redis, ChromaDB, or LangChain’s memory modules to give agents:

  • Dialogue history

  • Task memory

  • Cross-session persistence


8. What You Can Build

Use Case Description
Dev Workflow Agent Planner → Researcher → Coder
AI Research Assistant Summarizer → Analyzer → Visualizer
Data QA Chain Validator → Rewriter → Publisher
Web Navigation Agent Searcher → Reader → Extractor
Legal Assistant Case Retriever → Clause Checker → Writer

Why Qwen3 Works So Well in CrewAI

  • ✅ Large context window (up to 128K)

  • ✅ Works with structured prompts (system + user roles)

  • ✅ Instruction-tuned for role-based behavior

  • ✅ Fast local inference with 7B/14B options

  • ✅ Fully open-source (Apache 2.0)


Conclusion: Bring Autonomous Agents to Life with Qwen3

With Qwen3 + CrewAI, you get:

  • Modular agents with custom goals

  • Tool integration

  • Agent collaboration

  • Full control via local models

Now you can go beyond chatbots—and build fully open, intelligent systems that reason, plan, and build together.


Resources



Qwen3 Coder - Agentic Coding Adventure

Step into a new era of AI-powered development with Qwen3 Coder the world’s most agentic open-source coding model.