Deploy Qwen3 as a Slack or Discord Chatbot |
Step-by-Step Guide

Deploy Qwen3 as a Slack or Discord Chatbot

Introduction: Bring Qwen3 Into Your Team Chats

What if your team could chat with a powerful LLM directly from Slack or Discord?

With Qwen3 models, you can create:

  • Private AI assistants

  • Company knowledge bots

  • Workflow automation agents

This guide shows you how to deploy a Qwen3-powered chatbot into Slack or Discord, hosted locally or in the cloud.


1. Prerequisites

Requirement Slack Discord
Bot account setup ✅ Slack API App ✅ Discord Developer Portal
Token (OAuth) ✅ Bot token ✅ Bot token
Python libraries slack_sdk discord.py or nextcord
Qwen3 model deployment Local or via vLLM Same

Optional: Use ngrok or Cloudflare Tunnel for public access.


2. Deploy Qwen3 Model with vLLM

Use Qwen/Qwen1.5-7B-Chat or Qwen1.5-14B-Chat.

bash
pip install vllm python -m vllm.entrypoints.openai.api_server \ --model Qwen/Qwen1.5-7B-Chat \ --port 8000

This serves the model on an OpenAI-compatible endpoint.


3. Slack Bot Integration

✅ Step-by-Step

  1. Go to api.slack.com/apps

  2. Create a new app → Enable bot permissions

  3. Add chat:write, app_mentions:read

  4. Install app to your workspace → Get bot token

Python Bot Code (Slack)

python
from slack_sdk import WebClient from slack_sdk.rtm_v2 import RTMClient import openai openai.api_key = "none" openai.api_base = "http://localhost:8000" slack_bot_token = "xoxb-..." # Your token client = WebClient(token=slack_bot_token) rtm = RTMClient(token=slack_bot_token) @rtm.on("message") def handle_msg(event_data): text = event_data["data"].get("text", "") channel = event_data["data"]["channel"] if "<@your_bot_id>" in text: response = openai.ChatCompletion.create( model="Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": text} ] ) reply = response["choices"][0]["message"]["content"] client.chat_postMessage(channel=channel, text=reply) rtm.start()

4. Discord Bot Integration

Step-by-Step

  1. Go to discord.com/developers

  2. Create a new bot app

  3. Get bot token and invite bot to your server

Python Bot Code (Discord)

python
import discord import openai openai.api_key = "none" openai.api_base = "http://localhost:8000" intents = discord.Intents.default() intents.message_content = True client = discord.Client(intents=intents) @client.event async def on_ready(): print(f'Bot connected as {client.user}') @client.event async def on_message(message): if message.author == client.user: return if client.user.mention in message.content: response = openai.ChatCompletion.create( model="Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": message.content} ] ) reply = response["choices"][0]["message"]["content"] await message.channel.send(reply) client.run("YOUR_DISCORD_BOT_TOKEN")

Customize: Add Slash Commands or Memory

Feature Slack Discord
Slash commands Yes (/ask-ai) Yes (/commands)
Persistent memory Use Redis or JSON file Same
Private replies client.chat_postEphemeral() await ctx.respond()

You can also add tools like search, weather, or databases.


Security Tips

  • Store tokens securely using .env or secrets manager

  • Restrict bot access to selected channels

  • Log usage for debugging or audit


Conclusion: Qwen3 in Your Chat Stack

With this setup:

  • Your team can ask questions in Slack/Discord

  • Data stays local with Qwen3

  • Replies match your tone and domain

Qwen3 brings the power of open-source LLMs into everyday workflows—securely and cost-effectively.


Resources



Qwen3 Coder - Agentic Coding Adventure

Step into a new era of AI-powered development with Qwen3 Coder the world’s most agentic open-source coding model.